Abstract
A novel hybrid algorithm that employs BP neural network (BPNN) and particle swarm optimization (PSO) algorithm is proposed for the kinematic parameter identification of industrial robots with an enhanced convergence response. The error model of the industrial robot is established based on a modified Denavit‐Hartenberg method and Jacobian matrix. Then, the kinematic parameter identification of the industrial robot is transformed to a nonlinear optimization in which the unknown kinematic parameters are taken as optimal variables. A hybrid algorithm based on a BPNN and the PSO is applied to search for the optimal variables which are used to compensate for the error of the kinematic parameters and improve the positioning accuracy of the industrial robot. Simulations and experiments based on a realistic industrial robot are all provided to validate the efficacy of the proposed hybrid identification algorithm. The results show that the proposed parameter‐identification method based on the BPNN and PSO has fewer iterations and faster convergence speed than the standard PSO algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.