Abstract

In this paper, we have proposed a hybrid optical wavelength demultiplexer and power combiner for a hybrid time- and wavelength-division multiplexing (TWDM) passive optical network (PON), i.e., a single passive optical device that functions as a 1×N wavelength demultiplexer for distributing the downstream signal in multiple wavelengths from the optical line terminal (OLT) to the N optical network units (ONUs), and simultaneously as an N×1 power combiner for collecting the upstream signal in the same wavelength from the N ONUs to the OLT. Through a design example of a 32 channel hybrid optical wavelength demultiplexer and power combiner on the silicon-on-insulator platform, our numerical simulation result shows that the insertion loss and adjacent channel crosstalk of the downstream wavelength demultiplexer are as low as 4.6 and −16.3 dB, respectively, while the insertion loss and channel non-uniformity of the upstream power combiner can reach 3.5 and 2.1 dB, respectively. The proposed structure can readily be extended to other material platforms such as the silica-based planar lightwave circuit. Its fabrication process is fully compatible with standard clean-room technologies such as photo-lithography and etching, without any complicated and/or costly approach involved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call