Abstract

This paper proposes a novel hybrid offline–online neural identification-based robust adaptive control strategy for quadrotors subject to parameter uncertainties and external disturbances. A new method of using hybrid offline–online neural identification is developed to compensate for the residual force and moment caused by parameter uncertainties. Unlike previous methods that ignore the relevance of uncertainties in the time dimension, the proposed neural identification method mines temporal features of states from historical data by introducing long short-term memory (LSTM) networks, resulting in high identification accuracy. Furthermore, an online adaptation update law is designed to optimize the weights of the network estimates for strong robustness. Consequently, based on the identification of the network, a robust tracking controller on SE(3) is constructed, which is capable of attenuating the bounded disturbances by introducing anti-disturbance components. Finally, numerical simulations and experiments in the real physical world are carried out to verify the performance. The experimental results demonstrate that the proposed strategy not only achieves more accurate uncertainty identification in comparison to the existing methods, but also realizes a 44.28% reduction in the root-mean-square error (RMSE) of the position under the lump uncertainties, which illustrates enhanced robustness and generalizability. Video: https://youtu.be/3kIG5fcQaVE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.