Abstract

Resveratrol exhibits various pharmacological activities, which are dependent upon phenolic hydroxyl groups. In this work, glucosamine, lipoic acid, or adamantanamine moiety was applied for attaching to ortho-position of hydroxyl group in resorcinol moiety of resveratrol (known as position-2). Antioxidant effects of the obtained hybrids were characterized using DNA oxidative systems mediated by •OH, Cu2+/glutathione (GSH), and 2,2'-azobis(2-amidinopropanehydrochloride) (AAPH), respectively. The glucosyl-appended imine and amine at position-2 of resveratrol were found to show higher inhibitory effects than other resveratrol derivatives against AAPH-induced DNA oxidation. The antioxidative effect was quantitatively expressed by stoichiometric factor ( n, the number of radical-propagation terminated by one molecule of antioxidant). The stoichiometric factors of glucosyl-appended imine and amine of resveratrol increased to 4.74 (for imine) and 4.97 (for amine), respectively, higher than that of resveratrol (3.70) and glucoside of resveratrol (3.49). It was thereby concluded that the combination of resveratrol with glucosamine at position-2 represented a novel pathway for modifying resveratrol structure in the protection of DNA against peroxyl radical-mediated oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call