Abstract

The heat transfer analysis of systems with complex 3D geometries is usually done by numerical methods. Finite Element Method (FEM) and Finite Difference Methods (FDM) are widely used for this purpose. Complex geometries are accurately analyzed by FEM method. However, FEM solutions can be computationally inefficient for thermal problems that have high mesh densities with complex boundary conditions and variable material properties. On the other hand, Finite Difference method (FDM) is difficult to apply for complex geometric shapes. A hybrid numerical approach that combines the advantages of FDM and FEM has been integrated into a thermal simulation code. The hybrid technique has been implemented using object oriented programming techniques in a PC environment. A comparison of the computational efficiency of the two methods has been presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call