Abstract
A plate silencer consists of an expansion chamber with two side-branch cavities covered by light but extremely stiff plates. It works effectively with a wide stopband from low-to-medium frequencies only if the plate is extremely stiff, to ensure a strong reflection of acoustic wave to the upstream in the duct. However, a plate with a slightly weak bending stiffness will result in non-uniform transmission loss (TL) spectra with narrowed stopband. In this study, a hybrid silencer is proposed by introducing micro-perforations into the plate to elicit the sound absorption in order to compensate for the deficiency in the passband caused by the insufficient sound reflection in a certain frequency range due to weaker plate stiffness. A theoretical model, capable of dealing with the strong coupling between the vibrating micro-perforated plate and sound fields inside the cavity and the duct, is developed. Through proper balancing between the sound absorption and reflection, the proposed hybrid silencer provides a more flattened and uniform TL and a widened stopband by more than 20% while relaxing the harsh requirement on the bending stiffness of the plate. Theoretical predictions are validated by experimental data, with phenomenon explained through numerical analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.