Abstract

In recent years, hybrid neural network approaches, which combine mechanistic and neural network models, have received considerable attention. These approaches are potentially very efficient for obtaining more accurate predictions of process dynamics by combining mechanistic and neural network models in such a way that the neural network model properly accounts for unknown and nonlinear parts of the mechanistic model. In this work, a full-scale coke-plant wastewater treatment process was chosen as a model system. Initially, a process data analysis was performed on the actual operational data by using principal component analysis. Next, a simplified mechanistic model and a neural network model were developed based on the specific process knowledge and the operational data of the coke-plant wastewater treatment process, respectively. Finally, the neural network was incorporated into the mechanistic model in both parallel and serial configurations. Simulation results showed that the parallel hybrid modeling approach achieved much more accurate predictions with good extrapolation properties as compared with the other modeling approaches even in the case of process upset caused by, for example, shock loading of toxic compounds. These results indicate that the parallel hybrid neural modeling approach is a useful tool for accurate and cost-effective modeling of biochemical processes, in the absence of other reasonably accurate process models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.