Abstract

Positioning and navigation technology is a new trend of research in mobile robot area. Existing researches focus on the indoor industrial problems, while many application fields are in the outdoor environment, which put forward higher requirements for sensor selection and navigation scheme. In this paper, a complete hybrid navigation system for a class of mobile robots with load tasks and docking tasks is presented. The work can realize large-range autonomous positioning and path planning for mobile robots in unstructured scenarios. The autonomous positioning is achieved by adopting suitable guidance methods to meet different application requirements and accuracy requirements in conditions of different distances. Based on the Bezier curve, a path planning scheme is proposed and a motion controller is designed to make the mobile robot follow the target path. The Kalman filter is established to process the guidance signals and control outputs of the motion controller. Finally, the autonomous positioning and docking experiment are carried out. The results of the research verify the effectiveness of the hybrid navigation, which can be used in autonomous warehousing logistics and multi-mobile robot system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.