Abstract

With the continuous development of robotics and artificial intelligence, robots are being increasingly used in various applications. For traditional navigation algorithms, such as Dijkstra and A*, many dynamic scenarios in life are difficult to cope with. To solve the navigation problem of complex dynamic scenes, we present an improved reinforcement-learning-based algorithm for local path planning that allows it to perform well even when more dynamic obstacles are present. The method applies the gmapping algorithm as the upper layer input and uses reinforcement learning methods as the output. The algorithm enhances the robots' ability to actively avoid obstacles while retaining the adaptability of traditional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.