Abstract

Current commercial lithium ion battery (LIB) anodes comprising graphite and Li4Ti5O12 inevitably suffer from safety risk and low energy density. Hence, a novel anode material of Ti0.95Nb0.95O4/C hybrid nanotubes was developed via a modified sol-gel method combined with subsequent calcination. The hybrids consist of Ti0.95Nb0.95O4 quantum dots that are homogeneously embedded in the walls of porous bamboo-like CNTs. The high capacity feature of multiple redox couples of Ti-Nb-O based anodes is demonstrated by ex situ XPS in the hybrids. With the advantages of stimulative lithium storage, increased conductivity and robust mechanical properties due to the unique hybrid structure, the hybrids exhibit a high capacity (516.8 mA h g-1 at 0.2 A g-1), superior long-term cycling stability (142.7 mA h g-1 at 5 A g-1 after 3000 cycles) and an ultra-high rate capability (234.6 mA h g-1 at 1 A g-1 and 125 mA h g-1 at 8 A g-1). Meanwhile, the hybrids showed superior electrochemical performance compared with the reported Li4Ti5O12 and Ti-Nb-O based anodes. Furthermore, the GITT measurements revealed the fast Li+ transport for the charge-discharge processes of the hybrids. Such prominent merits of the Ti0.95Nb0.95O4/C hybrid nanotubes make them more likely candidates that can replace graphite and Li4Ti5O12 anodes in LIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.