Abstract
The work is devoted to the study of the processes of formation of multilayer nanostructures, their vacuum deposition, and the manufacture of a novel functional element of spintronics - superconducting spin valve, which is a multilayer structure consisting of ferromagnetic cobalt nanolayers separated by superconductor niobium films. Multilayer nanostructures are fabricated by magnetron sputtering on (111) silicon substrates at a temperature of 300K. The prototypes of the superconducting spin valve are prepared from multilayer nanostructures by the method of sharp focus reactive ion etching (FIB). Modeling was carried out using molecular dynamics methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.