Abstract

Currently available wound dressings to heal thermal and chronic wounds are unable to respond to the challenges of resistance to bacterial infection, protein adsorption, and increased levels of wound exudates. To this end, we have conceived the fabrication of a new and ideal wound dressing with a number of key attributes. They include effective antimicrobial activity in a controlled manner, ultralow fouling property that provides resistance to protein adsorption and bacterial adhesion, maintain a moist but not saturated environment to promote healing, and is non-adherent and effective in the presence of heavy wound exudate. The novel approach to reduce infection and bacterial colonization involves incorporation of a unique silver-clay nanohybrid architecture in zwitterionic polymer, poly(sulfobetaine). The innovative concept of silver-clay hybrid structure enables us to obtain high, sustained, and diffusion-controlled antimicrobial activity of silver eluting polymer. The sustained and diffusion-controlled high antimicrobial efficiency is obtained through a process involving in situ precipitation of silver nanoparticles with large surface area on the surface of clay platelets. Furthermore, the use of recently developed zwitterionic polymer, poly(sulfobetaine) [poly(SB)] for wound dressing, provides antifouling property, which resists protein adsorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call