Abstract
Theranostics, a method that combines targeted therapy and diagnostic imaging, has emerged as a viable route for enhancing cancer treatment, and hybrid nanoparticles (HNPs) are at the forefront of this field. Metallic, polymeric, lipid-based, and silica- based HNPs are studied for targeting and biocompatibility. Using HNPs, chemotherapeutic drugs, small interfering RNA, and therapeutic genes can be given precisely and controlled. This enhances therapeutic efficacy and reduces adverse effects. With fluorescence dyes, MRI contrast agents, and PET tracers, real-time therapy response monitoring is conceivable. A nano platform with therapeutic and diagnostic capabilities holds great promise for personalized medicine and precision oncology. The present study discusses HNPs' biocompatibility, stability, immunogenicity, and long-term biosafety, which are crucial to the clinical translation of cancer theranostics. Further, in this in- -depth investigation, we investigated the design, synthesis, and multifunctional activities of HNPs for use in cancer theranostics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.