Abstract
AbstractNow that well‐ordered nanoparticles can yield a promising performance in various fields, spatially regular arrangement of particles is a key requirement for nanoparticle‐embedded engineering materials and devices. Here, we demonstrate a feasible, robust method where nanoparticles can be regularly distributed and encapsulated. Polymeric substrates with different sized nanoholes were injection‐molded by controlling mold‐wall temperature in a spatial and temporal manner. A hybrid structure of nanoparticles was constructed by binding quantum dots with metal nanoparticles, and they were filled into the nanoholes using the knife coating process. The morphology of the nanostructure prepared via the molding process and the nanoparticle array was analyzed using a scanning electron microscope and a transmission electron microscope. Fluorescence emission of the hybrid nanostructure was measured. The finding showed that the strategic approach introduced in this study could allow fabrication of hybrid nanoparticle structures with good processability and productivity. © 2024 Society of Chemical Industry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.