Abstract

Complex cure kinetics involved in the elaboration of organic/inorganic hybrid silicate nanocomposites based on diglycidyl ether of bisphenol A (DGEBA), 1,3-phenylenediamine (m-PDA), and modified montmorillonite (MMTm) clay have been studied. An advanced isoconversional method has been applied to nonisothermal data in order to evaluate cure kinetic parameters. A new method based on nonlinear optimization was proposed to compute nonisothermal kinetic parameters avoiding complex optimization techniques. The objective is to obtain kinetic parameters rather than modeling values in order to give more insight into the elucidation of complex cure mechanisms. Key kinetic parameters of cure have been computed according to this method. It appears that the reaction mechanism changes if MMTm is added to the curing system. The results reveal an increase of the efficiency of collisions in presence of MMTm at the beginning of the cure and an increase of the frequency of diffusion jumps at the later stage of the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call