Abstract

The initial-value problem for first order single linear neutral delay differential equations (NDDEs) of constant and pantograph delay types have been solved by using hybrid multistep block method. The method has been derived by applying Taylor series interpolation polynomial and implementing the predictor-corrector formulas in PE(CE)m mode where m is the number of iterations for the proposed method. Both types of NDDEs will be solved at two-point simultaneously including the off-step point with constant step-size. In order to find the solution for NDDEs, the delay solutions of the unknown function will be interpolated using Lagrange interpolation polynomial and the derivative of the delay solutions will be obtained by applying divided difference formula. The order, consistency and convergence of the proposed method have been discussed in detail in the methods section. The properties of stability region for NDDEs have also been analysed. Numerical results presented have concluded that the proposed method is comparable with the existing method and is assumed to be reliable for solving first order NDDEs with constant and pantograph delay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.