Abstract

We present an industrial case study in automotive control of significant complexity: the new common-rail fuel-injection system for Diesel engines developed by Magneti Marelli Powertrain. In this system, an inlet metering valve, inserted before the High Pressure (HP) pump, regulates the fuel flow that supplies the common rail according to the engine operating point (e.g. engine speed and torque). The standard approach to controller design adopted in the automotive in- dustry is based on mean-value models of the plant. However, the fuel injection system exhibits complex discrete-continuous interactions, due to the slow time-varying frequency of the HP pump cycles and the fast sampling frequency of sensing and actuation. Hence, a hybrid approach to controller design is very promizing. In this paper, we present the synthesis of a hybrid multi-rate controller for a Magneti Marelli Powertrain common-rail fuel-injection system for four-cylinder multi-jet engines. Controller design is based on a hybrid model of the injection system. The resulting hybrid controller performs significantly better then previous controllers developed in the company on the basis of mean-value models of the plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.