Abstract
This paper proposes an algorithm named hybrid multi-population and adaptive search range strategy with particle swarm optimization (ARPSO) for solving multimodal optimization problems. The main idea of the algorithm is to divide the global search space into multiple sub-populations searching in parallel and independently. For diversity increasing, each sub-population will continuously change the search area adaptively according to whether there are local optimal solutions in its search space and the position of the global optimal solution, and in each iteration, the optimal solution in this area will be reserved. For the purpose of accelerating convergence, at the global and local levels, when the global optimal solution or local optimal solution is found, the global search space and local search space will shrink toward the optimal solution. Experiments show that ARPSO has unique advantages for solving multi-dimensional problems, especially problems with only one global optimal solution but multiple local optimal solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Swarm Intelligence Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.