Abstract

The pyrolysis of melamine was an effective one-pot method for preparing a nanostructured multifunctional photocatalytic based on core/shell g-C3N4@TiO2 heterojunction. Various techniques entirely characterized these materials: X-ray diffraction (XRD) proved to enhance the as-prepared materials' crystallinity through the variation of dislocation, strain, and crystallite size with TiO2 loading. The stacked layered/sheet-like with a smooth surface of the as-prepared samples have been shown via scanning electron microscopy (SEM). Diffuse reflectance spectroscopy (DRS) showed an apparent decrease in the energy bandgap for these nanocomposites with TiO2 loading. All the prepared materials were subjected to visible photocatalytic applications under the same conditions. The dye model (Methylene Blue, MB), and antibiotic model (Amoxicillin, AMO), was photodegraded using the as-prepared nanocomposites under visible light irradiation. In the recombination reduction among TiO2 and g-C3N4 interfaces, g-C3N4 has been effectively utilized as a matrix. Our findings proved that g-C3N4@TiO2 photocatalysts exhibited superior photocatalytic performance. CNT-5 of 2.58 eV bandgap had a higher activity of 99.7 in 50 min for MB and 100% in 20 min for AMO than the other represented photocatalysts in this work. The migration of photogenerated electrons from a g-C3N4 to TiO2 via heterojunction among them as g-C3N4 (1 0 1) removes the electrons accumulated on (1 0 1) of TiO2, improve the photodegradation efficiency. Therefore, the increase in photocatalytic reaction rates, recycling, and the sample's photostability can be considered the result of successful interactions among the TiO2 and g-C3N4 systems. The suggested photodegradation mechanism of MB and AMO was discussed in detail and compared with previously reported work. Therefore, the photodegradation rate of MB and AMO via CNT-5 composite is 6 and 3 times, respectively, higher than that of g-C3N4 under simulated solar irradiation. This research creates a new perspective on the production of nanocomposite materials in the area of treatment of pharmaceutical and dye contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.