Abstract
Big Data optimization (Big-Opt) refers to optimization problems which require to manage the properties of big data analytics. In the present paper, the Search Manager (SM), a recently proposed framework for hybridizing metaheuristics to improve the performance of optimization algorithms, is extended for multi-objective problems (MOSM), and then five configurations of it by combination of different search strategies are proposed to solve the EEG signal analysis problem which is a member of the big data optimization problems class. Experimental results demonstrate that the proposed configurations of MOSM are efficient in this kind of problems. The configurations are also compared with NSGA-III with uniform crossover and adaptive mutation operators (NSGA-III UCAM), which is a recently proposed method for Big-Opt problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.