Abstract

• Artificial Neural Networks (ANNs) live a vital role in many areas including medical, security systems and stock market. • This paper proposed nine new integrated models for forecasting intraday stock price based on the potential of three ANNs. • Results proved that the PSO-BPNN model yielded the highest prediction accuracy in estimating intraday stock price. • Other models produced low performances in prediction accuracy are 97.2, 98.4, 84.0, 85.2, 84.0, 83.9, 89.9 and 78.6%. Stock market prediction is one of the critical issues in fiscal market. It is important issue for the traders and investors. Artificial Neural Networks (ANNs) associated with nature inspired algorithms are playing an increasingly vital role in many areas including medical field, security systems and stock market. Several prediction models have been developed by researchers to forecast stock market trend. However, few studies have focused on improving stock market prediction accuracy especially when utilizing artificial neural networks to perform the analysis. This paper proposed nine new integrated models for forecasting intraday stock price based on the potential of three ANNs, Back Propagation Neural Network (BPNN), Radial Basis Function Neural Network (RBFNN), Time Delay Neural Network (TDNN) and nature inspired algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC).The developed models were named as GA-BPNN, PSO-BPNN, ABC-BPNN, GA-RBFNN, PSO-RBFNN, ABC-RBFNN, GA-TDNN, PSO-TDNN and ABC-TDNN. Nature inspired algorithms are employed for optimizing the parameters of ANNs. Technical indicators calculated from historical data are fed as input to developed models. Proposed hybrid models validated on four datasets representing different sectors in NSE. Four statistical metrics, Root Mean Square Error (RMSE), Hit Rate (HR), Error Rate (ER) and prediction accuracy were utilized to gauge the performance of the developed models. Results proved that the PSO-BPNN model yielded the highest prediction accuracy in estimating intraday stock price. The other models, GA-BPNN, ABC-BPNN, GA-RBFNN, PSO-RBFNN, ABC-RBFNN, GA-TDNN, PSO-TDNN and ABC-TDNN produced lower performance with mean prediction accuracy of 97.24%, 98.37%, 84.01%, 85.15%, 84.01%, 83.87%, 89.95% and 78.61% respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.