Abstract
Banks are important to national, and even global, economic stability. Banking panics that follow bank insolvency or bankruptcy, especially of large banks, can severely jeopardize economic stability. Therefore, issuers and investors urgently need a credit rating indicator to help identify the financial status and operational competence of banks. A credit rating provides financial entities with an assessment of credit worthiness, investment risk, and default probability. Although numerous models have been proposed to solve credit rating problems, they have the following drawbacks: (1) lack of explanatory power; (2) reliance on the restrictive assumptions of statistical techniques; and (3) numerous variables, which result in multiple dimensions and complex data. To overcome these shortcomings, this work applies two hybrid models that solve the practical problems in credit rating classification. For model verification, this work uses an experimental dataset collected from the Bankscope database for the period 1998–2007. Experimental results demonstrate that the proposed hybrid models for credit rating classification outperform the listing models in this work. A set of decision rules for classifying credit ratings is extracted. Finally, study findings and managerial implications are provided for academics and practitioners.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.