Abstract

Applying machine learning (ML) techniques is a complex task when the data quality is poor. Integrating first-principle models and ML techniques, namely hybrid modelling significantly supports this task. This paper introduces a novel approach to developing a hybrid model for dynamic chemical systems. The case in analysis employs one first-principle structure and two ML-based predictors. Two training approaches (serial and parallel), two optimisers (particle swarm optimisation and differential evolution) and two ML functions (multivariate rational function and polynomial) are tested. The polynomial function trained with the differential evolution showed the most accurate and robust results. The training approach does not significantly affect the hybrid model accuracy. However, the main effect of the training approach is on the robustness of the parameter predictions. The coefficients of determination (R2) on the test batches are above 0.95. In addition, it showed satisfactory extrapolation capabilities on different production scales with R2>0.9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.