Abstract
Cyanotoxins, a kind of poisonous substances produced by cyanobacteria, are responsible for health risks in drinking and recreational waters. As a result, anticipate its presence is a matter of importance to prevent risks. The aim of this study is to use a hybrid approach based on support vector regression (SVR) in combination with genetic algorithms (GAs), known as a genetic algorithm support vector regression (GA–SVR) model, in forecasting the cyanotoxins presence in the Trasona reservoir (Northern Spain). The GA-SVR approach is aimed at highly nonlinear biological problems with sharp peaks and the tests carried out proved its high performance. Some physical–chemical parameters have been considered along with the biological ones. The results obtained are two-fold. In the first place, the significance of each biological and physical–chemical variable on the cyanotoxins presence in the reservoir is determined with success. Finally, a predictive model able to forecast the possible presence of cyanotoxins in a short term was obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.