Abstract

The device-scale simulation of electrically driven solid state quantum light emitters, such as single-photon sources and nanolasers based on semiconductor quantum dots, requires a comprehensive modeling approach, that combines classical device physics with cavity quantum electrodynamics. In a previous work, we have self-consistently coupled the semi-classical drift-diffusion system with a Markovian quantum master equation in Lindblad form to describe (i) the spatially resolved current injection into a quantum dot embedded within a semiconductor device and (ii) the fully quantum mechanical light-matter interaction in the coupled quantum dot-photon system out of one box. In this paper, we extend our hybrid quantum-classical modeling approach by including a Schroedinger–Poisson problem to account for energy shifts of the quantum dot carriers in response to modifications of its macroscopic environment (e.g., quantum confined Stark effect due to the diode’s internal electric field and plasma screening). The approach is demonstrated by simulations of a single-photon emitting diode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call