Abstract

Sensor networks play a central role in the Internet of things, which attracts lots of attentions recently. Mathematical models are of much help to explore intricate scheduling on the sensor node or interactions between different sensor nodes. Although many existing approaches have shown that the sensor network behaves like a hybrid system, where discrete character and continuous character exist together, few of them have attempted to consider two characters together. In this paper, we propose a novel quantitative modeling framework based on Fluid Stochastic Petri nets (FSPNs), and provide comprehensive theoretical analysis to a typical sensor network example. Our modeling framework, which combines advantages of both Stochastic Petri Nets (SPNs) and Hybrid Functional Petri Nets (HFPNs), reflects the hybrid nature of sensor networks, and at the same time eases the problem of state space explosion. The modeling mechanism proposed in this paper constructs sensor network models that are comprised of both stochastic processes and fluid flow approximation technique. From the evaluation, it's shown that the new method performs well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.