Abstract
مقدمه:.یکی از مهمترین رویدادها در صنعت گردشگری هر کشور، میزان تقاضا برای یک محصول یا مقصد گردشگری و پیش بینی درست آن است. اما باید توجه داشت که فواصل و انحرافاتی بین مقادیر واقعی و پیش بینی وجود دارد. استفاده از روشهای علمی و نوین در امر پیش بینی، باعث خواهد شد که نتایج حاصله به مراتب بیش از یک تخمین عینی به حقیقت نزدیک شوند که مقاله حاضر نیز همین هدف را در حوزه گردشگری پزشکی دنبال میکند. روش ها: در مرحله اول عوامل موثر بر تقاضای گردشگری پزشکی داخلی با استفاده از تکمیل پرسش نامه های مربوط به روش دلفی فازی و دیمتل فازی توسط ۳۱ نفر از خبرگان آشنا به این حوزه و پردازش توسط نرم افزار MATLAB۲۰۱۷aشناسایی شدند و پس از مشخص شدن تابع تقاضا و جمع آوری اطلاعات ماهیانه هر یک از عوامل موثر در بازه زمانی سال های ۱۳۸۱ تا ۱۳۹۴، سه مدل پیش بینی رگرسیون، شبکه عصبی فازی و الگوریتم SVR به صورت مجزا و ترکیبی برای این تابع در نرم افزار MATLAB اجرا و خطای پیش بینی هریک، اندازه گیری و با هم مقایسه شد. یافته ها: نتایج پژوهش حاضر نشان داد که تابع تقاضای گردشگری پزشکی داخلی شامل: عوامل اقتصادی (درآمد و ثروت افراد )، قیمت خدمات و هزینه زندگی در مقصد، قیمت تاسیسات اقامتی، وجود آلودگی هوا، قیمت محصولات جایگزین (سفر خارجی)، تعداد مراکز پزشکی، بیمارستانهاو آزمایشگاهها است. نتیجه گیری: رویکرد ترکیبی رگرسیون چندگانه و الگوریتم SVR پیشنهادی نیز می تواند پیش بینی بهتری نسبت به سایر روش ها در خصوص پیش بینی گردشگری پزشکی داخلی داشته باشد. بنابراین، پیشنهاد می شودبه منظور کاهش میزان خطای پیش بینی جهت انجام برنامه ریزی های اصولی در حوزه تقاضای گردشگری پزشکی داخلی شهر تهران از این تابع تقاضا و مدل پیش بینی استفاده شود. واژه های کلیدی: شبکه عصبی فازی، الگوریتمSVR، پیش بینی تقاضای گردشگری پزشکی داخلی، تهران، مدل سازی
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.