Abstract

As excessive rain may cause numerous disasters, rainfall prediction is very crucial and the prediction should be realistic since it encourages individuals to take preventative steps. This work proposes a new rainfall prediction model by following three major phases: Preprocessing, Extraction of Features and Prediction. The Improved Data Normalization technique is carried out for preprocessing the data. Then, it extracts the technical Indicator features like Average Directional Movement (ADX), Moving Average Convergence Divergence (MACD), RSI, Welles Wilder's Smoothing Average (WWS), statistical & higher order statistical features. According to these features, prediction takes place by a hybrid model that includes the Improved DBN & LSTM methods. By fine-tuning the best weights, the training will be carried out optimally to increase the prediction model's efficacy. For this, the Brownian Motion-based Pelican Optimization Algorithm (BMPOA) is implemented. Finally, the proposed technique has contrasted over existing models concerning different metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.