Abstract

Dynamic Power Management (DPM) is a system level power management technique that selectively shut down idle electrical components to save power. Previous works are mainly focused on certain types of prediction technique which assume that the idle period is long range dependent (heuristic prediction based on past history), random process (Markov Process) or short range dependent (Autoregressive) characteristic. However, the user behavior is highly variable and single assumption might not hold for all conditions. Thus, techniques based on the above assumptions will only be effective in certain condition only. Hence, we propose here a Hybrid Model DPM system that combines Moving Average (MA), Time Delay Neural Network (TDNN) and random walk model to perform idle period prediction. The Hybrid Model will first analyze the Long Range Dependency and central tendency of the past idle period time series, and choose the most appropriate strategy for future idle period prediction. Simulation results show that the Hybrid Model achieves higher power saving in most of the scenarios compared to the other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.