Abstract
Optical pulses at high repetition rates are generated using rational harmonic mode locking and saturable absorber made of graphene nanoparticles in a fiber laser. The pulse generation from the fiber laser is modeled by solving the Generalized Nonlinear Schrodinger Equation. The computation involved varying the various saturable absorption parameters, such as linear and nonlinear absorption coefficients. Experimentally stable pulse trains at 20 GHz and 50 GHz are generated with a pulse width of ∼ 2.7 ps. This result agrees with the simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of High Speed Electronics and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.