Abstract

Hybrid methods are developed for improving the Gauss-Newton method in the case of large residual or ill-conditioned nonlinear least-square problems. These methods are used usually in a form suitable for dense problems. But some standard approaches are unsuitable, and some new possibilities appear in the sparse case. We propose efficient hybrid methods for various representations of the sparse problems. After describing the basic ideas that help deriving new hybrid methods, we are concerned with designing hybrid methods for sparse Jacobian and sparse Hessian representations of the least-square problems. The efficiency of hybrid methods is demonstrated by extensive numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.