Abstract
Soil moisture is an essential parameter for a better understanding of water processes in the soil–vegetation–atmosphere continuum. Satellite synthetic aperture radar (SAR) is well suited for monitoring water content at fine spatial resolutions on the order of 1 km or higher. Several methodologies are often considered in the inversion of SAR signals: machine learning techniques, such as neural networks, empirical models and change detection methods. In this study, we propose two hybrid methodologies by improving a change detection approach with vegetation consideration or by combining a change detection approach together with a neural network algorithm. The methodology is based on Sentinel-1 and Sentinel-2 data with the use of numerous metrics, including vertical–vertical (VV) and vertical–horizontal (VH) polarization radar signals, the classical change detection surface soil moisture (SSM) index ISSM, radar incidence angle, normalized difference vegetation index (NDVI) optical index, and the VH/VV ratio. Those approaches are tested using in situ data from the ISMN (International Soil Moisture Network) with observations covering different climatic contexts. The results show an improvement in soil moisture estimations using the hybrid algorithms, in particular the change detection with the neural network one, for which the correlation increases by 54% and 33% with respect to that of the neural network or change detection alone, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.