Abstract

Impact craters are ubiquitous and well-studied structures of high geological relevance on the surfaces of the Earth’s Moon, the terrestrial planets, the asteroids and the satellites of the outer planets. Therefore, it is not surprising that crater detection algorithms (CDAs) are one of the most studied subjects of image processing and analysis in lunar and planetary science. In this paper we are proposing a Hybrid CDA: a modified DEM (digital elevation map) reconstruction method used as a step in an existing CDA based on Hough transform. The new Hybrid CDA consists of: (1) reconstruction of topography from optical images using a shape from shading approach; (2) utilization of the DEM-based CDA; (3) correction of brightness and contrast of optical images used in order to be more suitable for evaluation of detections. An additional result of this work is a new method for evaluation of topography reconstruction algorithms, using a DEM-based CDA and an earlier approach for evaluation of CDAs. The new Hybrid CDA was tested using two Chandrayaan-1 Moon Mineralogy Mapper (M3) images and two excerpts of the Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) global optical image mosaic. As a result, the number of craters inside these four regions increased considerably from 1754 (as available in the previous LU60645GT catalogue) to 19396 craters (as available in the resulting new LU78287GT catalogue). This confirmed the practical applicability of the new Hybrid CDA, which can be used in order to considerably extend current crater catalogues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.