Abstract

A hybrid metal photonic crystal based nanostructured cavity and waveguide for the sub-wavelength confinement of light is proposed and it is shown that a bottom reflector is vital for the vertical emission from a silicon (Si) photonic crystal (PC) nanocavity. A photonic crystal slab of Si (&epsilon;<sub>d</sub>=11.56 or n<sub>d</sub>=3.4) with air holes and metal as an underlying substrate is chosen and three dimensional (3D) photonic bandgap for structure is calculated with plane wave expansion (PWE) method. Using finite difference time domain (FDTD) method, the transmission of a cavity mode as a function of Photonic crystal slab thickness is calculated and it is observed that the transmission increases with the increase in slab thickness at wavelength, &lambda; = 1.55&mu;m. Also, transverse electric field profiles (Ey) of the cavity mode has been shown and quality factor are calculated for the cavity and possible application in the area of PC light based emitters such as plasmonic lasers and single photon source is assessed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.