Abstract
Controlling product selectivity is essential for improving the efficiency of multi-product reactions. Electrochemical water oxidation is a reaction of main importance in different applications, e.g., renewable energy schemes and environmental protection, where H2O2 and O2 are the two principal products. In this Communication, the product selectivity of electrochemical water oxidation was controlled by making use of the chiral induced spin selectivity (CISS) effect at mesoporous-TiO2 on the molecule-modified Au substrate. Our results show a decrease in H2O2 formation when using chiral hetero-helicene molecules adsorbed on the Au substrate. We propose a mechanism for this kinetic effect based on the onset of CISS-induced spin polarization on the Au-helicene chiral interface. We also present a new tunable substrate to investigate the CISS mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.