Abstract

BackgroundDue to the shortage of organs’ donors that limits biological heart transplantations, mechanical circulatory supports can be implanted in case of refractory end-stage heart failure to replace partially (Ventricular Assist Device, VAD) or completely (Total Artificial Heart, TAH) the cardiac function. The hemocompatibility of mechanical circulatory supports is a fundamental issue that has not yet been fully matched; it mostly depends on the nature of blood-contacting surfaces.MethodsIn order to obtain hemocompatible materials, a pool of hybrid membranes was fabricated by coupling a synthetic polymer (polycarbonate urethane, commercially available in two formulations) with a decellularized biological tissue (porcine pericardium). To test their potential suitability as candidate materials for realizing the blood-contacting surfaces of a novel artificial heart, hybrid membranes have been preliminarily characterized in terms of physicochemical, structural and mechanical properties.ResultsOur results ascertained that the hybrid membranes are properly stratified, thus allowing to expose their biological side to blood and their polymeric surface to the actuation system of the intended device. From the biomechanical point of view, the hybrid membranes can withstand deformations up to more than 70 % and stresses up to around 8 MPa.ConclusionsThe hybrid membranes are suitable for the construction of the ventricular chambers of innovative mechanical circulatory support devices.

Highlights

  • Due to the shortage of organs’ donors that limits biological heart transplantations, mechanical circulatory supports can be implanted in case of refractory end-stage heart failure to replace partially (Ventricular Assist Device, ventricular-assist devices (VADs)) or completely (Total Artificial Heart, total artificial hearts (TAHs)) the cardiac function

  • The quest for alternative therapeutic treatments stimulated the development of mechanical circulatory supports (MCSs): ventricular-assist devices (VADs) successfully support one ventricle, whereas total artificial hearts (TAHs) replace both ventricles

  • Immunofluorescence staining revealed that collagen and elastin architecture was preserved after decellularization

Read more

Summary

Introduction

Due to the shortage of organs’ donors that limits biological heart transplantations, mechanical circulatory supports can be implanted in case of refractory end-stage heart failure to replace partially (Ventricular Assist Device, VAD) or completely (Total Artificial Heart, TAH) the cardiac function. The optimal therapeutic solution for refractory end-stage HF is represented by cardiac transplantation, which is limited by organs’ shortage [2]. The quest for alternative therapeutic treatments stimulated the development of mechanical circulatory supports (MCSs): ventricular-assist devices (VADs) successfully support one ventricle, whereas total artificial hearts (TAHs) replace both ventricles. TAH implantation represents a suitable option for patients requiring biventricular mechanical circulatory support either as bridge to transplant (BTT) or destination therapy (DT) [2, 3]. Cooley and Liotta performed the first TAH implantation in humans: they used the so-called “Liotta Heart” and the patient (a 47-year-old man) was bridged to transplantation after 64 h of support [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call