Abstract

We report our experimental studies of different kinds of magnetic/semiconductor hybrid materials and devices highly promising for the next generation spintronics. The epitaxial Fe films on three III–V Semiconductor surfaces, In x Ga 1− x As(1 0 0), x = 0 , 1, 0.2, show a uniaxial magnetic anisotropy in the ultrathin region. This suggests that both interface bonding and the magnetoelastic effect control magnetic anisotropy. We demonstrate the epitaxial growth of new hybrid spintronic structures, namely, Fe 3O 4/GaAs and Fe 3O 4/MgO/GaAs, where the magnetic oxide has both high Curie temperature and high spin polarisation. Both the magnetisation loops and magneto-resistance curves of Fe 3O 4/GaAs were found to be dominated by a strong uniaxial magnetic anisotropy. We have also fabricated a novel vertical hybrid spin device, i.e. Co(15 ML)/GaAs(50 nm, n-type)/Al 0.3Ga 0.7As(200 nm, n-type)/FeNi(30 nm) and observed for the first time a change of the magneto-resistance up to 12% by direct transport measurements, which demonstrated large spin injection and the feasibility to fabricate the spin-transistors capable of operating at room temperatures by using magnetic/semiconductor hybrid materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.