Abstract

Magnetic scaffolds with different charge densities were prepared using magnetic nanoparticles (MNP) and xanthan gum (XG), a negatively charged polysaccharide, or hydroxypropyl methylcellulose (HPMC), an uncharged cellulose ether. XG chains were crosslinked with citric acid (cit), a triprotic acid, whereas HPMC chains were crosslinked either with cit or with oxalic acid (oxa), a diprotic acid. The scaffolds XG-cit, HPMC-cit and HPMC-oxa were characterized by scanning electron microscopy (SEM), inductively coupled plasma atomic emission spectroscopy (ICP-AES), superconducting quantum interference device (SQUID) magnetometry, contact angle and zeta-potential measurements. In addition, the flux of Ca2+ ions through the scaffolds was monitored by using a potentiometric microsensor. The adhesion and proliferation of murine fibroblasts (NIH/3T3) on XG-cit, XG-cit-MNP, HPMC-cit, HPMC-cit-MNP, HPMC-oxa and HPMC-oxa-MNP were evaluated by MTT assay. The magnetic scaffolds presented low coercivity (<25Oe). The surface energy values determined for all scaffolds were similar, ranging from 43mJm−2 to 46mJm−2. However, the polar component decreased after MNP incorporation and the dispersive component of surface energy increased in average 1mJm−2 after MNP incorporation. The permeation of Ca2+ ions through XG-cit-MNP was significantly higher in comparison with that on XG-cit and HPMC-cit scaffolds, but through HPMC-cit-MNP, HPMC-oxa and HPMC-oxa-MNP scaffolds it was negligible within the timescale of the experiment. The adhesion and proliferation of fibroblasts on the scaffolds followed the trend: XG-cit-MNP>XG-cit>HPMC-cit, HPMC-cit-MNP, HPMC-oxa, HPMC-oxa-MNP. A model was proposed to explain the cell behavior stimulated by the scaffold charge, MNP and Ca2+ ions permeation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call