Abstract

In order to validate required operation of the proposed Wide-Field InfraRed Survey Telescope (WFIRST) coronagraph instrument, we have built a testbed in Jet Propulsion Laboratory (JPL), which is analogous to the baseline WFIRST coronagraph instrument architecture. Since its birth in 2016, this testbed, named as Occulting Mask Coronagraph (OMC) testbed, has demonstrated several crucial technological milestones: Broadband high contrast demonstration in both Hybrid Lyot Coronagraph (HLC) and Shape Pupil Coronagraph (SPC) modes while the Low Order Wavefront Sensing and Control (LOWFS/C) subsystem senses and corrects the dynamic flight-like wavefront disturbances. In this paper, we present up-to-date progress of HLC mode demonstration in the OMC testbed. While injecting the flight-like low photon flux starlight with expected Line of Sight (LoS) and Wavefront Error (WFE) perturbation to the OMC testbed, we demonstrate generating high contrast dark hole images. We first study the expected photon flux in actual flight environment, and estimate detection noise and estimation accuracy of the complex electric field if the wavefront sensing algorithm is used based on the pair-wise difference imaging. Then, we introduce our improved scheme to mitigate this photon-starved flight-like low flux environment. As a result, we generate a dark hole that meets the WFIRST raw contrast requirements using the 2nd magnitude star light. We establish the key ideas, describe test setups, and demonstrate test results with data analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call