Abstract

AbstractCold sintering process (CSP) developed recently has attracted much attention due to the ultralow sintering temperatures and high efficiencies with the assist of transient liquid phase (TLP). Based on CSP, we have further established a protocol for low‐temperature sintering processes by combining TLP with other sintering technologies, including hybrid sintering process with microwave and TLP (MW‐TLP), and hybrid sintering process with spark plasma sintering and TLP (SPS‐TLP). Three typical electro‐ceramics (TiO2, CaWO4, and ZnO) are selected, which are highly densified (>97%) with excellent electrical properties at reduced sintering temperatures, applied pressures or holding times, demonstrating the feasibility of MW‐TLP and SPS‐TLP in fabricating electro‐ceramics. Especially, the Q × f value of TiO2 ceramics (38,020 GHz) prepared by MW‐TLP at 1000°C is 46.2% and 23.4% higher than that of microwave and spark plasma sintered samples, respectively, and comparable to traditional thermal sintered (TTS) samples at 1300–1400°C. The dielectric properties of MW‐TLP CaWO4 ceramics sintered at 900°C for 2 h are comparable to TTS samples sintered at 1000–1300°C for 2–5 h. ZnO ceramics can be highly densified (∼98%) by SPS‐TLP with mild sintering conditions (200–300°C and 3.8–50 MPa) compared to SPS (>500°C) and CSP (>100 MPa). The frameworks of fundamental mechanisms are outlined together with the experimental data. It is expected that this work will provide promising sintering methods to fabricate electro‐ceramics and offer inspirations on sintering combinations to develop low‐temperature sintering processes with high efficiencies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.