Abstract

Hybrid local and charge transfer (HLCT) excited state materials, which possess weak donor-acceptor (D-A) pure organic structures, deserve one of the most promising efficient and stable blue emitters. Through high-lying reverse intersystem crossing (hRISC) process, 75% triplet excitons generated by electrical excitation could be harvested and utilized in organic light-emitting diodes (OLEDs). However, there are still significant challenges to achieve high-efficiency ultra-deep-blue HLCT emitters with low Commission Internationale de l'Eclairage (CIE) 1931 chromaticity coordinate y values. Here, a series of novel blue HLCT emitters based on spiro[1,8-diazafluorene-9,2'-imidazole] structure were designed and synthesized by fine-tuning the spiro[fluorene-9,2'-imidazole] core structure in our previous work through heteroatom substitution and hyperconjugation effect. The target emitters were endowed with excellent photophysical and electrochemical merits, thermal stability and solution processibility. The solution-processed OLED device based on 4',5'-bis(4-(9H-carbazol-9-yl)phenyl)spiro[1,8-diazafluorene-9,2'-imidazole] (NFIP-CZ) achieved efficient ultra-deep-blue emission (CIEx,y = 0.1581, 0.0422) with the maximum external quantum efficiency (EQEmax), maximum current efficiency (CEmax) and maximum power efficiency (PEmax) of 11.94%, 4.07 cd·A-1 and 2.56 lm·W-1. The record EQE is a breakthrough in both solution-processed and vacuum vapor deposition ultra-deep-blue HLCT-OLEDs currently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.