Abstract

The moth search algorithm (MS) is a relatively new metaheuristic optimization algorithm which mimics the phototaxis and Lévy flights of moths. Being an NP-hard problem, the 0–1 multidimensional knapsack problem (MKP) is a classical multi-constraint complicated combinatorial optimization problem with numerous applications. In this paper, we present a hybrid learning MS (HLMS) by incorporating two learning mechanisms, global-best harmony search (GHS) learning and Baldwinian learning for solving MKP. (1) GHS learning guides moth individuals to search for more valuable space and the potential dimensional learning uses the difference between two random dimensions to generate a large jump. (2) Baldwinian learning guides moth individuals to change the search space by making full use of the beneficial information of other individuals. Hence, GHS learning mainly provides global exploration and Baldwinian learning works for local exploitation. We demonstrate the competitiveness and effectiveness of the proposed HLMS by conducting extensive experiments on 87 benchmark instances. The experimental results show that the proposed HLMS has better or at least competitive performance against the original MS and some other state-of-the-art metaheuristic algorithms. In addition, the parameter sensitivity of Baldwinian learning is analyzed and two important components of HLMS are investigated to understand their impacts on the performance of the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call