Abstract

In this paper, a new optimization algorithm called hybrid leader-based optimization (HLBO) is introduced that is applicable in optimization challenges. The main idea of HLBO is to guide the algorithm population under the guidance of a hybrid leader. The stages of HLBO are modeled mathematically in two phases of exploration and exploitation. The efficiency of HLBO in optimization is tested by finding solutions to twenty-three standard benchmark functions of different types of unimodal and multimodal. The optimization results of unimodal functions indicate the high exploitation ability of HLBO in local search for better convergence to global optimal, while the optimization results of multimodal functions show the high exploration ability of HLBO in global search to accurately scan different areas of search space. In addition, the performance of HLBO on solving IEEE CEC 2017 benchmark functions including thirty objective functions is evaluated. The optimization results show the efficiency of HLBO in handling complex objective functions. The quality of the results obtained from HLBO is compared with the results of ten well-known algorithms. The simulation results show the superiority of HLBO in convergence to the global solution as well as the passage of optimally localized areas of the search space compared to ten competing algorithms. In addition, the implementation of HLBO on four engineering design issues demonstrates the applicability of HLBO in real-world problem solving.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.