Abstract
Aluminum nitride (AlN) are particularly suitable as integrated circuits (ICs) substrates due to its high thermal conductivity and excellent electricity insulation. However, its poor weldability with metals limits its usage. Recent research on surface metallization of AlN provides possible solutions to tackle this defect. Nevertheless, these solutions show some shortages such as complicated processes or insufficient electrical conductivity. In this paper, we report a method that consists of laser induced surface metallization and laser sintering of silver (Ag) coatings. A nanosecond laser was applied to induce a 10 μm thick aluminum (Al) layer from the AlN substrate. Afterwards, laser sintering of Ag layers was implemented, which could enhance the conductivity and the bonding performance between layers. With optimized laser parameters applied, both the electrical conductivity and the bonding tests demonstrated excellent physical properties. Finally, simulation and EDS analysis illustrated the melting evolution and confirmed a metallurgical combination of Al and Ag, thus enhancing bonding strength. Thanks to the small size of focused laser spot, electrical circuits width could be greatly narrowed if these findings were applied; hence highly dense ICs on AlN substrate become potentially available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.