Abstract

In this work, hybrid laser-arc welding process was applied to X90 pipeline steel which has wide potential applications in the future pipeline project. The effect of different laser power (1.0, 1.5 and 2.5 kW) on microstructure and mechanical properties of weld joints was investigated. It has been found that a macroscopic morphology of “wine cup like” is observed in the weld joint with increasing laser power, where fusion zone (FZ) and heat-affected zone (HAZ) can be clearly identified. The FZ microstructure mainly includes massive ferrite, acicular ferrite (AF), and increased laser power resulting in a decrease in AF content. The HAZ consists of coarse-grained HAZ (CGHAZ), fine-grained HAZ (FGHAZ) and mixed-grained HAZ (MGHAZ). The hardness ranging from the weld center to base metal decreases and then increases, and the effect of laser power on hardness is not significant. The increased laser power leads to an evident decrease in the ultimate tensile strength and impact toughness of weld joint. The highest ultimate tensile strength and impact energy are 815 MPa, 239.1 J respectively at a laser power of 1.0 kW. A number of inclusions are observed at the bottom of dimples, which may be the (Ti,Mn)2O3 particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.