Abstract

In this paper, we propose a hybrid Laplace transform and finite difference method to price (finite-maturity) American options, which is applicable to a wide variety of asset price models including the constant elasticity of variance (CEV), hyper-exponential jump–diffusion (HEJD), Markov regime switching models, and the finite moment log stable (FMLS) models. We first apply Laplace transforms to free boundary partial differential equations (PDEs) or fractional partial differential equations (FPDEs) governing the American option prices with respect to time, and obtain second order ordinary differential equations (ODEs) or fractional differential equations (FDEs) with free boundary, which is named as the early exercise boundary in the American option pricing. Then, we develop an iterative algorithm based on finite difference methods to solve the ODEs or FDEs together with the unknown free boundary values in the Laplace space. Both the early exercise boundary and the prices of American options are recovered through inverse Laplace transforms. Numerical examples demonstrate the accuracy and efficiency of the method in CEV, HEJD, Markov regime switching models and the FMLS models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.