Abstract

In this chapter, a partitioned approach-based hybrid Lagrangian–Eulerian (HLE) method and its application for analysis of various computational fluid–structure dynamics (CFSD) problems are presented. The HLE method uses a physical law-based finite volume method (FVM) and level-set function-based immersed boundary method (LS-IBM) for computational fluid dynamics (CFD), a geometric nonlinear Galerkin finite element method (FEM) for computational structural dynamics (CSD), and an implicit coupling between CFD and CSD that involves direct implementation of fluid–solid boundary conditions. The algebraic formulation is presented by the physics-based FVM for a Cartesian control volume in CFD and the geometric nonlinear Galerkin FEM for a three-node triangular element in CSD. Further, the associated solution methodologies are presented first separately for both CFD and CSD and then together with the implicit coupling methodology. The HLE method-based applications that involve large deformation and complex geometry (of the structure) are presented here for the analysis of various types of one-way and two-way coupled CFSD problems (involving both rigid and deformable or flexible structures).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call