Abstract
In order to overcome the poor exploitation of the krill herd (KH) algorithm, a hybrid differential evolution KH (DEKH) method has been developed for function optimization. The improvement involves adding a new hybrid differential evolution (HDE) operator into the krill, updating process for the purpose of dealing with optimization problems more efficiently. The introduced HDE operator inspires the intensification and lets the krill perform local search within the defined region. DEKH is validated by 26 functions. From the results, the proposed methods are able to find more accurate solution than the KH and other methods. In addition, the robustness of the DEKH algorithm and the influence of the initial population size on convergence and performance are investigated by a series of experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.