Abstract

AbstractWe present a new simulation results of the cloud dynamics in the ambient magnetospheric plasma on the large time and spatial scales. It was assumed that these impulsive structures observed by the MMS spacecraft originally were created because of the reconnection at the magnetopause. Our new 3‐D hybrid kinetic modeling on the large time and spatial scales captures several of these processes: an excitation of the electromagnetic waves (whistler and shear‐Alfvén waves) and plasma instabilities (mirror and flute); a formation of shock waves, and collapsing diamagnetic cavity; particle acceleration. A strong overshoot in plasma density profile was observed in the modeling and MMS observation at the interface between the cloud and magnetospheric plasma. The cloud expansion into ambient magnetospheric plasma causes the flute waves connected with excitation of the Rayleigh‐Taylor instability observed at the overshoot in plasma density profile across the external magnetic field. The modeling demonstrates a formation of the whistler waves at the initial stage which propagate in the external magnetic field direction. At the later stage, a formation of shear‐Alfvén waves was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.