Abstract

Estimation of the structure response to seismic motion is an important part of structural analysis related to mitigation of seismic risk caused by earthquakes. Many methods of computing structure response require knowledge of mechanical properties of the ground which could be derived from near-surface seismic studies. In this paper we address computationally efficient implementation of the wave-equation tomography. This method allows inverting first-arrival seismic waveforms for updating seismic velocity model which can be further used for estimating mechanical properties. We present computationally efficient hybrid kinematic-dynamic method for finite-difference (FD) modeling of the first-arrival seismic waveforms. At every time step the FD computations are performed only in a moving narrowband following the first-arrival wavefront. In terms of computations we get two advantages from this approach: computation speedup and memory savings when storing computed first-arrival waveforms (it is not necessary to make calculations or store the complete numerical grid). Proposed approach appears to be specifically useful for constructing the so-called sensitivity kernels widely used for tomographic velocity update from seismic data. We then apply the proposed approach for efficient implementation of the wave-equation tomography of the first-arrival seismic waveforms.

Highlights

  • Mechanical properties of the ground are crucial information for safe construction

  • In this paper we address computationally efficient implementation of the wave-equation tomography for constructing seismic velocity models

  • Efficient method of computing the first-arrival waveforms can be beneficial in the reverse-time migration for constructing seismic images [13, 14] and the wave-equation tomography (WT) for velocity model building of Luo and Schuster [15]

Read more

Summary

Introduction

Mechanical properties of the ground are crucial information for safe construction. In particular, seismic analysis is an important stage of structural analysis in areas with high earthquake risk. Efficient method of computing the first-arrival waveforms can be beneficial in the reverse-time migration for constructing seismic images [13, 14] and the wave-equation tomography (WT) for velocity model building of Luo and Schuster [15] (finite-frequency generalization of the conventional ray-based traveltime tomography). Both methods consider each shot gather independently and imply computation of two wavefields: forward computation of the so-called source field and adjoint (time-reversed) computation of the so-called receiver field. In this paper we consider only 2D isotropic models to illustrate the concept

Hybrid Forward Modeling Technique
Application to Wave-Equation Imaging and Tomography
Examples
Discussion
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.